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• Work was conducted by
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Objectives

• The objective of this project was to combine 
the best features of the two advanced factor 
analysis models, UNMIX and Positive Matrix 
Factorization (PMF), and to test the 
effectiveness of this improved factor analysis 
methodology by analysis of the data developed 
in the various supersites with an emphasis on 
data from the New York City Supersite and 
other data from New York State. 



Methodological Research

• Part of the effort in the project was methodological 
studies. 
• Duality of Solutions

• Singular value decomposition of the data leads to two sets of 
eigenvectors. One set of eigenvectors spans a space in which source 
compositions are points and source contributions are hyperplanes. 
This space is shown to be dual to the space spanned by the second 
set of eigenvectors of the data in which source compositions are 
hyperplanes and source contributions are points. The duality 
principle has been applied to greatly increase the computational 
speed of the Unmix multivariate receptor model.



Methodological Research

• G-Space Edges
• Scatter plots are created of pairs of source contribution 

factors.  When factors are plotted in this way, unrealistic 
rotations appear as oblique edges that define the 
distribution of points away from one (or both) of the 
coordinate axes. With a correct rotation, the limiting 
edges usually coincide with the axes or lay parallel with 
them.  Inspection of the plots helps one in choosing a 
realistic rotation.



G-Space Edges

• If the two factors are independent of one 
another, then the resulting contribution values 
should completely fill the scatter plot and there 
should be no correlation between them.



G-Space Edges
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G-Space Edges
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G-Space Edges
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G-Space Plots

• Obviously there is an edge in this plot.

• Does it make sense that these two factors are 
correlated?   

• If not, it suggests the need for a rotation.



G-Space Edges
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G-Space Edges

• Note that there can be points outside the 
apparent edge.

• These points should be checked to be sure they 
belong.  However, it may be necessary to 
ignore them.



G-Space Edges
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G-Space Edges
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G-Space Edges

• Even after rotation, edges can persist. 



G-Space Edges
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Applications

• Particle Composition Data
• Use of IMPROVE carbon fractions 
• Use of STN data



Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; and 
Robbins, R. (1994).  Differences in the carbon composition of source profiles for diesel- and 
gasoline-powered vehicles.  Atmos. Environ., 28(15):2493-2505.

Gasoline-fueled vehicles
IMPROVE

• IMPROVE provides carbon fractions
Diesel-fueled vehicles



IMPROVE
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IMPROVE

Diesel Vehicles
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STN-NYC
Gasoline Vehicles



STN-NYC
Diesel Vehicles



Gasoline – Diesel Split

• Can gasoline vehicular emissions be separated from 
diesel emissions?
• Shah et al. (Environ. Sci. Technol. 38 (9), 2544-2550, 

2004) show that stop and go and creeping diesel vehicles 
emit roughly 50:50 OC/EC as measured with the NIOSH 
protocol.

• Problems of “smokers” looking like “diesel” emissions



Gasoline – Diesel Split

• Thus, the “diesel” profile tends to reflect the 
emissions from vehicles moving at highway speed 
(i.e., min OC/EC ratio)

• “Gasoline” reflects the maximum OC/EC ratio

• However, the oil additive trace elements tend to go 
into the “diesel” profile.



Gasoline – Diesel Split

• Does the choice of IMPROVE or NIOSH protocols 
affect the apportionment and the assignment of 
mass to “diesel,” “gasoline,” and other major 
carbonaceous aerosol sources like biomass burning.

• We have an opportunity to make such a comparison 
using data from the St.Louis-Midwest Supersite.



Comparison of PMF using either 
IMPROVE or NIOSH Data

• Using  daily integrated PM2.5 samples  
obtained at the St. Louis-Midwest Supersite, 
OC/EC analyses were performed by the two 
protocols:
• OC-EC were originally analyzed at UW-Madison 

with the ACE-Asia variant of the NIOSH protocol
• Subsequently, the same samples were analyzed at 

DRI using the IMPROVE protocol



Comparison of PMF using either 
IMPROVE or NIOSH Data

• Analysis was undertaken for three sets of PM2.5 
speciation data at the St. Louis-Midwest Supersite in 
which each set differs only in the carbon 
concentrations.  
• The first set (679 samples for 31 species)  has eight carbon 

fractions (OC1 to OC4, OP, and EC1 to EC3) from the 
IMPROVE protocol.  

• The second set (679 samples for 25 species) included only 
the total IMPROVE OC  (TOC = OC1 + OC2 + OC3 + 
OC4 + OP) and EC fractions (TEC = EC1 - OP + EC2 + 
EC3), respectively.

• The last set (679 samples for 25 species) contains OC and 
EC concentration obtained by the NIOSH analysis. 



Comparison of PMF using either 
IMPROVE or NIOSH Data

• Solutions with 11 factors, 10 factors, and 10 
factors were obtained by IMPROVE carbon 
fractions, IMPROVE TOC-TEC values, and 
NIOSH OC-EC values, respectively, for the St. 
Louis Supersite PM2.5.  
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Comparison of PMF using either 
IMPROVE or NIOSH Data
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Comparison of PMF using either 
IMPROVE or NIOSH Data
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Biomass Burning
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Mass Reconstruction
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